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Turned parts on turning centers are made up of features with profiles defined by arcs and lines. An
error model for turned parts must take into account not only individual feature errors but also ow
errors carry over from one feature to another. In the case where there is a requirement of tange:icy
between two features, such as a line tangent to an arc or two tangent arcs, any error model on one of
the features must also satisfy a condition of tangency at a boundary point between the two features.
Splines, or piecewise polynomials with differentiability conditions at intermediate or knot points,
adequately model errors on features and provide the necessary degrees of freedom to match
constraint conditions at boundary points. The problem of modeling errors on features becomes one of
least squares fitting of splines to the measured feature errors subject to certain linear constraints at the
boundaries. The solution of this problem can be formulated uniquely using the generalized or pseudo
inverse of a matrix. This is defined and the algorithm for modeling errors on turned parts is
formulated in terms of splines with specified boundary constraints.
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1. Introduction

Errors in a machined part are due to several sources.
There are errors inherent in the machine itself due, for
example, to misalignment of slide ways and other
geometric errors. There are errors due to thermal
deformations of the machine while operating. There
are also errors caused by inaccurately specified tool
dimensions, tool wear, tool and/or part deflection, and
so on. We will call the latter types of errors the
'process related errors". It is the modeling of these

process related errors for a turning center that will
concern us in this study.

The object of developing process error models is to
apply them in error compensation strategies (Donmez
et al., 1991). Error compensation during machining
has been well explored. Chen et al. (1993) developed
an error compensation system that could compensate
not only for geometric errors but also for time-variant
thermal errors on a 3-axis mill. They reported cutting
tests on a strip-like surface with depth differences to
evaluate spindle growth and hole drilling tests to
evaluate compensation in the X and Y axes. Yang et al.

(1996), following the previous work of Chen et al.

(1993), implemented an updated version of the
geometric-thermal error compensation model and
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evaluated it by diagonal displacement according to
ANSI/ASME B5.54 (1992). They do not report any
cutting tests. Chen et al. (1997) constructed an error
compensation model based on sampling position
errors at a limited number of points in the workspace
of a vertical turning machine. They tested their
machine along typical motion trajectories with and
without error compensation. Chan erjee (1997)
reported on the application of an error compensation
strategy applied to cutting a flat aluminum pre-
machined bottom-lapped workpiece mounted on a
carrier plate according to ANSI/ASME B5.54 (1992).
It consisted of face milling the top surface, end
milling a step on the periphery of the workpiece,
milling two circular pockets in the center of the test
piece and plunge milling, boring, and counter-boring
a series of 36 holes. Zhou and Harrison (1999)
introduced artificial intelligence modeling into error
compensation modeling. They report on the use of a
fuzzy-neural hybrid model to error compensation
using in-cycle measuring by a touch trigger probe
system. Their goal was to reduce the component
dimension variation. The model was trained using
varied ranges for error, cutter wear, and compensation
values. The sample workpiece used for training was
rectangular with a slot cut in it. Mize and Ziegert
(2000) report on the use of a neural network model to
compensate errors while cutting the ANSI/ASME
B5.54 (1992) precision positioning test part.

The error compensation strategy described in this
study differs from the previous results in that it
requires interpreting a part as consisting of separate
manufacturing features. Such a decomposition of a
part is useful for establishing correspondence between
design information and manufacturing operations
(Gupta et al., 1995). Part features can be defined
very generally. For a turning center, however, in
which part geometry is defined in two dimensions, the
features of concern are the arcs and lines that
comprise the CAD profile of the part. CAD-based
methods facilitate the creation of pre-process data
such as feature geometry, nominal coordinates of
gauging points, and surface normal vectors. The error
model for a turned part reported on in this study takes
into account not only an error on individual features
but also the way in which the error carries over from
one feature to another. This just reflects the physical
fact that as a tool cuts a feature of a part it transitions
in a smooth manner to cutting the next feature. This
implies that there should not be any unintentional

changes in slopes between features. Therefore, a
feature error model must satisfy slope constraints at
the ends of the features. The tangency problem is not
only significant for turning operations but becomes
even more critical in contour milling operations.

Researchers reporting test applications of error
compensation models for 3-axis machine tools use
typical operations that involve drilling, boring, slot
milling or step milling. None of the test parts or
motions requires machining operations to maintain
continuity of tangency between, for example, con-
tours and adjoining planar sections. Contouring
operations on 3-axis machines are possible if rotary
tables are used. They are also currently feasible by
parallel kinematic machines without introducing
rotary tables. The measurements of errors on a
prototype machine have been reported by Soons
(1999a,b). No machining tests of contouring error
compensation have been reported to the authors'
knowledge. The error compensation models for the 3-
axis machines would have to be modified to take into
account rotary axis errors and a new class of error
compensation models would have to be developed for
the parallel axis machines.

Although the present study deals only with
operations on a turning center it introduces a new
method of compensating process errors of parts that
require maintaining tangency between features.
Process errors can be measured during machining
(Fan and Chow, 1991) or by process intermittent
gauging (Bandy, 1991). Process-intermittent gauging
has an advantage in that a simple measurement
device, such as a touch-trigger probe, can be inserted
into the tool changer. This form of probe is less
intrusive than apparatus required for measurement
during machining. Process-intermittent gauging of
process-related part errors usually takes place
between semi-finish and finish machining processes.
This permits on-line modeling of process-related
errors, the results of which are then used to anticipate
and compensate these errors in the finish process. For
a discussion of process-intermittent probing and real-
time error compensation see Yee (1990) and Yee and
Gavin (1990).

The machine tool error model introduced here uses
function forms that can be computed rapidly when the
models are implemented in real-time error compensa-
tion strategies. This often means that function forms
need to be low-order polynomials. However, low-
order polynomials may or may not model all the errors
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on a machined feature. If the geometry of a feature is
broken into smaller parts, though, the errors on those
smaller parts can often be modeled by low-order
polynomials. If the low-order polynomials are chosen
in such a way that the slopes are made equal at the
feature part transition points, the combined piecewise
polynomial is called a spline (DeBoor, 1978).

The error-modeling algorithm described in this
report combines the use of splines, to model the errors
within a feature, with boundary slope constraints at
the ends of the features. The general modeling
technique involves a least squares fitting of a spline
to process-intermittent, measured, machine-error data
but with an extra requirement that tangency at the end
of features be maintained. These tangency constraints
are usually linear so the algorithm can be classified as
a least squares fitting of a linear model with linear end
constraints. A detailed description of the implementa-
tion this new process-intermittent error compensation
model is given in Bandy et al. (2001). It describes the
management of part features, the compensation
calculations for linear and curved features and the
production of the error-compensation tool path. It
further discusses the prototype system implementa-
tion as well as numerous verification tests.

This report is divided as follows. Section 2
describes modeling errors on linear profiles and
Section 3 describes modeling errors on curved
profiles. In Section 4 the interpolating splines with
end constraints are constructed. An application of the
process-intermittent error compensation using the
new spline model is given in Section 5. Section 6
concludes the report with a discussion of results and a
view of future research.

2. Modeling errors on features with linear profiles

When linear features join each other the modeling
does not necessarily require splines but splines could
be used. Regardless of whether splines are used, at
least two cases of errors usually occur. First, if an
analysis of the part errors indicates the existence of
feature size errors only, a constant offset for either
axis is sufficient to compensate the errors. In this case,
the compensation software inserts the appropriate
values in the tool offset update command in the
numerical control (NC) program segment for the
finish cut and all coordinates in the NC program are
left at their nominal values. As an alternative means of

compensating such errors, the compensation software
also writes the axis offsets to a file, which is used for
real-time compensation. Second, if errors are essen-
tially linear but the slopes are different from those of
the nominal features, the compensation software can
adjust the finish cuts for each feature. Adjustments for
features with nominally linear profiles are usually
calculated by fitting linear functions through the error
vectors computed at the gauge points for each cut of
the part. The intersections of the linear equation for a
cut with similar linear error equations for the
neighboring cut on each side give the errors at the
endpoints of the cut. These endpoint errors are used to
adjust the points that are then entered into NC
program for the finish cut and are written to a file
that is used to provide data to generate real-time cut
adjustments. Elaboration of these procedures may be
found in Bandy and Gilsinn (1996; 1995a,b).

3. Modeling errors on features with curved
profiles

If a part contains a feature whose nominal profile is
not linear, the adjustments are more complex. For
example, when an arc smoothly meets a line or
another arc, not only do the compensation curves
intersect but the two curves must usually be tangent to
each other. The treatment of a circular arc profile is
explained in this section. The principles, however, can
be extended to non-circular curves.

Some earlier work in compensating errors on a
hemispherical nose of a turned part showed that error
compensation on arcs was feasible (Yee et al., 1992).
No attempt, however, was made in this previous work
to maintain tangencies at feature boundaries.
Although the previous work showed that process-
intermittent errors in curved features could be
compensated, the application was limited to a turned
hemisphere generated by a aominal arc cut, because a
circle could be fitted to tl- e probed data. However,
turning centers can generate other types of curved
cuts, which are better fitted by spline modeling.
Furthermore, the previous work did not consider what
would happen at the interface between two features
such as a linear feature tangent to a curved feature. If
two curves are fit separately to probed values on each
feature, then the resulting curves might have a
discontinuity at the nominal point of tangency. In
the finish cut, this could lead to a significant step in the
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part. Therefore, another data fitting procedure had to
be investigated to compensate errors on general,
turned, curved features that might have various
interface angles to neighboring features. That is, a
least squares technique with prescribed boundary
conditions had to be developed. This problem cannot
be treated as a standard least squares problem since
the boundary conditions restrict the selection of the
fitting parameters.

Polynomials are useful as approximation functions
to unknown and possibly very complex nonlinear
relationships. However, the literature on least squares
regression models (Smith, 1979; Wold, 1974) warns
that it is important to keep the order of the polynomial
models as low as possible. In an extreme case it is
possible to pass a polynomial of order n 1 through n
points so that the polynomial of sufficiently high
degree can always be found that provides a "good" fit
to the data. The behavior of the polynomial between
the data points may be highly oscillatory, though, and
not provide good data interpolation. Figure 1 is a good
example of the oscillatory behavior of a high-order
interpolating polynomial. The probe data in the figure
represents micrometer errors measured on the Z-axis
of travel on a turning center. Notice that the
interpolating polynomial goes through each of the
data points, but only produces a good fit between the
data points within the mid-range of the data. The
interpolating polynomial, however, performs large
excursions near the ends of the data set. This is a
typical behavior of a high-order interpolating poly-
nomial.

When a function behaves differently in different
parts of the range of the independent variable, the
usual approach is to divide the range of the
independent variable into segments and fit an
appropriate curve to each segment. Spline functions
offer a way to perform this type of piecewise
polynomial fitting and provide smooth transitions, if
desired, between neighboring segments.

Splines are generally defined to be piecewise
polynomials of degree n. The function values and
first n— 1 derivatives are set to agree at the points
where they join. The abscissa coordinates of these
joining points are called knots. Thus, a spline is a
continuous function with n— 1 continuous deriva-
tives. Polynomials may be considered a special case of
splines with no knots, and piecewise polynomials with
fewer than the maximum number of continuity
restrictions may also be considered splines. The
number and degrees of the polynomial pieces and
the number and position of the knots may vary in
different situations.

Figure 2 shows the results of interpolating the same
probe data as in Fig. 1 but using a clamped spline
(note that the scale of the ordinate axis is different
from Fig. 1). A clamped spline means one with
prescribed derivative conditions specified at the end
points of the data. This figure shows vividly the
benefits of interpolating with spline functions. The
ability to interpolate with piecewise polynomial
allows a tighter control on the interpolation errors.
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Fig. 1. The results of interpolating with a polynomial of order 12.
Note the large oscillation at the right end.

Fig. 2. Interpolating the same data from Fig. 1 using a clamped

cubic spline. Note the close modeling of the data.
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4. Constructing interpolating splines with end
constraints

It is possible to construct a basis, or sequence of
functions, such that every spline of interest can be
written in one and only one way as a linear
combination of these functions (Montgomery and
Peck, 1992). General cubic splines (n = 3) will be
used since they have been shown to be adequate for
most practical problems. They can be written in terms
of basis functions as follows:

Let an ordered sequence of k knots be given. These
can be nominal probe points, but do not necessarily
have to be

	

a < t i < t2 < • • • <tk < b	 (1)

A cubic spline with these k knots can be written as
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 c •	 (x — 1- .1
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This cubic spline representation has continuous first
and second derivatives. See Smith (1979) and Wold
(1974) for good general discussions of the use of
splines in statistical data analysis.

Assume that there are s sampled points in the plane
given by the pairs (x i , y 1 ), . . , (x ,„ys) and suppose
that the x-values are ordered by

	

a < x, <x2 < • • < xs < b	 (4)

where a and b are bounds for the sequence of x-values.
Since the sampled points might show undesired
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oscillations or noise, some form of smoothing will
be obtained by not selecting knots at each point. In
fact, guidelines in the literature (Smith, 1979; Wold,

1974) suggest 4-5 points between knots. Since this
will not always be possible one can select this value as
a variable, say r, and set a knot at every rth point. This
would mean that one first selects an integer k so that
kr < s. This selection of knots partitions the sampled
points into the sets

Xi < X2 < • • •

< X „(= t 1 ) < x,.	 < • • • <x2,.(= t2)

<x2, +1 • • • < Xkr (= t n)

<Xkr + 1 < • • • <J•	 (5)

The standard least squares problem of fitting a spline
of the form (2) through the sample points can be
formulated in matrix terms. To start with, define the
residual at the q-th sample point q = 1,2, . . . , s, as

q <r

ci +3 (X q — 03 q > r

(6)

where, for a given qth point, t is the smallest integer so
that q < tr < s. To begin formulating the matrix
version of the least squares problem define the vectors

c = ( C.01 • • • Ck +3) T ,	 Y = (y i , • • • , .Y,) T	 (7)

where the superscript T indicates a transposed vector.
The least squares sum is usually formulated as

LS(c)	 (1? q)2
	

(8)
q= 1

However, referring to (6), one can define the follow-
ing matrix
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The matrix A is s rows by k + 4 columns where

Ic r < s	 (10)

The least squares problem can now be formulated in
matrix notation as

(11)

where the minimum is taken over all vectors c and the
norm is the standard Euclidean norm.

The splines in this application are not unrestricted
at their ends, however, and this changes the least
squares problem in this case. In order to make the
curved features match with neighboring features,
restrictions must be placed on how the splines behave
at the endpoints a and b of the interval. In particular,
we will require that the splines go through specific
points with specific slopes. Therefore, we will require
the following conditions be satisfied:

Y(a) = Yo

Y(b) = Ys+

a—
dy

( ) = y(01)
dx
dy 

dx 
( 13 ) = Y

where the right hand sides are prescribed by the
matching requirements. These conditions can also be
formulated as matrix equations. To do this, first write
each of the conditions as

3

=Yo
j=0

+ 3(b — 03 = V...s+ 1
=

3
(

cicti	 = yoI )
1= I

Ci+3 (b —	 — +1

	

v (I)	 (13)
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then define

a a2 a3 0
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0

B =
b b2 h 3 (12 — t1 )3 (I)	 tk)3

0 1 2a 3a2 0 0
0 1 2b 3h 2 3(b — t 1 ) 2	... 3(12 — tk)2

and let

f	 (Yo, Y5+1, Y (01) , .)7(, 1_)k 1)T

	
(15)

The constraint equation becomes

	

Bc =,f
	

(16)

The constrained least squares problem is then the
combined relations (11) and (16). The solution of this
problem requires defining a generalized notion of an
inverse of a matrix.

If A is an n x n nonsingular matrix then the
solution of the matrix problem Ac = y is given
uniquely by c = A But in the least squares
problem where A has m rows and n columns and m
and n are not the same value, the question arises
whether there is an n x m matrix Z so that c = Zy,
where c is the unique minimum length solution of the
least squares problem (11). In fact the answer is yes,
and the matrix Z is uniquely determined by A. It is
called the generalized or pseudo inverse of A, and is
denoted by A + (Lawson and Hanson, 1974).

It is not difficult to find the generalized inverse of a
matrix A if A is properly decomposed. For this
application one can introduce the decomposition of A
called the singular value decomposition (Lawson and
Hanson, 1974). Any m x n matrix A, whose number
of rows m is greater than or equal to the number of
columns n, can be written as the product of an m x n
column orthogonal matrix U, an n x n diagonal
matrix D, and the transpose of an n x n orthogonal
matrix V. Symbolically

A = U DVT	 (17)

where

UT U = /

	

VT V =I
	 (18)

and I is the n x n identity matrix and D is the diagonal -
matrix

	

D = diag [d11 , d22 ,	 , dnn ]	 (19)

where di, could be zero for several i = s. The
generalized inverse of A can be written as

A + = V D + U T	 (20)

where

(12)

(14)
	

D + = diag [d 1+1 . d22,	 , d	n (21)
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and

{c±, dr1> tol (22)
0 cl„ < tol

and tol is a tolerance that is often set in such a way that
it is related to the reciprocal of the maximum allowed
condition number (i.e., ratio of the largest eigenvalue
to the smallest) for the matrix D.

One can now formulate the result that gives the
solution to the constrained least squares problem (11)
and (16). The principal reference for this result is
Lawson and Hanson (1974).

Given an m x n matrix B of rank k, an m-vector y,
an r x n matrix A, and an r-vector y the linear least
squares problem with equality constraints becomes
one of finding an n-vector c that minimizes

1l Ac - f	 (23)

and satisfies the linear equalities

Bc f	 (24)

This is just a general restatement of the problem
described by (11) and (16) above.

Assuming that (24) is consistent, there is a unique
solution that minimizes (23) subject to (24) (Wold,
1974). It is given by

c = f (AZ) + (y — AB + f)	 (25)

where

Z = I„ — B + B	 (26)

and I„ is the n x n identity matrix. For many usual
cases one would have n > r = k. The generalized
inverses are computed by the singular value decom-
position technique.

In order to use the spline representation of the
surface errors on a part it is easier to evaluate the
spline in its individual cubic components between
knots. To do this requires compacting the representa-
tion of the spline polynomial as the underlying
variable passes each knot. The algorithm is straight-
forward and begins by assuming that there are k knots.
First add two knots for the end points to make k+ 2
knots. Thus,

a= to<t i <	 <tk <ti„ = b.	 (27)

For k internal knots there will be k + 4 spline
coefficients. But when these are combined to form
groups of four coefficients for each interval there will

be 4k + 4 coefficients. These will be defined as
follows: For

a = to < x < ti	 (28)

the polynomial is given by

y(x) = c1 + C2* X ± C*3 X2 + C4* X3 	 (29)

where

*c l =

C2 = C2
*C3 = C3
*

C4

That is, the first four coefficients of the new array,
identified by the superscript asterisk, are the same as
the spline coefficients. The other groups of four
coefficients are computed as follows. For j= 1,
2, ... , k one has for

(I <<

	

— 
	 (31)

the polynomial

	

y(x) = C *4i+ 1 + C *4i+ 2	 c *4j+ 3 X2 + (1)+4 X3

(32)

where

C41+ = C 4(j-1) +	 j +4 j
3

,**	 u 4(i _ 1)+2 + 3 Ci+4C41+2

= C4(.% i) 3 - 3 C./ + 4 tjC 4j+3

= C 7j- 1) +4 ± Cj+4
*	 (33)Ci+4

5. Model application

The part used to demonstrate the application of the
algorithm is shown in Fig. 3. It has a step portion on
the largest diameter area, a long taper, a cylindrical
section and a dome.

The software in which the algorithm described in
this report, called The Process Intermittent Error
Compensation Software (PIECS) (Bandy and Gilsinn,
1996), is part of a prototype error compensation
system used to compensate machining errors on all of
these surfaces. The tool selected to turn the part was
chosen from a batch known to have worn tips, but the
exact nature of the wear was unknown at the time of

= C4	 (30)
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Fig. 3. Part with hemispherical dome used to test algorithm.

selection. The authors thought that this would be a
good test of the algorithm, since the errors generated
in the semi-finish cut would be unknown beforehand
to the operator. The resulting semi-finish part showed
errors that indicated the worn spot lay at approxi-
mately a 45° angle on the tool tip. This is inferred
from the errors plotted in Fig. 4. The errors were

Dimensional errors

Bars = Errors X 150

Part No: 2811	 NC filename: PT281000.DNC

CAD filename: MOD2881.COL Part Name: MOD2881

Fig. 4. A "whiskers plot of the errors on the semi-finish part.

Gilsinn, Bandy and Ling

found by on-machine probing of the part, and are
shown as scaled bars that are called "whiskers". The
whisker plots in Figs 4 and 5 reflect the semi-finish
and finish part errors listed in Table 1, averaged for
four plots. The values are in micrometers. Gauging
points were numbered from 1 to 32 from the large
diameter end to the nose of the dome. The dome
portion of the part in its semi-finish stage is magnified
in Fig. 6. Error compensation during the finish cut
reduced the mean error on the dome by 96%.

Tangency is desired at the junction between the

Table 1. Semi-finish and finish errors for turned part. Mean

turning center errors for four parts

Point
number

Nominal X
gauging
coordinate
(mm)

Nominal Z
gauging
coordinate
(mm)

Semi-
finish
part error

(Pm )

Finish
part
error
(ftm)

1 63.872 - 149.163 90 - 1

2 60.465 - 143.011 93 -1

3 57.057 - 136.858 93 - 2

4 53.649 - 130.705 94 - 1

5 50.242 - 124.553 93 - 3

6 44.704 - 106.934 12 0

7 44.704 - 92.012 11 -1

8 44.704 - 77.089 11 -3

9 44.704 - 62.167 12 -3

10 44.704 - 47.244 12 -2

11 43.434 - 44.704 0 0

12 37.084 -- 38.354 7 -3

13 36.997 - 34.546 22 8

14 36.700 - 31.764 32 3

15 36.195 - 29.012 45 - 2

16 35.483 - 26.306 53 - 5

17 34.570 - 23.662 63 - 3

18 33.459 - 21.094 70 1

19 32.159 - 18.617 76 2

20 30.675 - 16.245 78 -1

21 29.016 13.991 77 - 3

22 27.193 - 11.870 77 - 1

23 25.215 9.891 71 -3

24 23.093 - 8.068 64 - 3

25 20.839 - 6.409 59 - 2

26 18.467 - 4.925 51 -2

27 15.990 - 3.625 45 -3

28 13.422 - 2.514 37 - 6

29 10.778 - 1.601 33 - 6

30 8.072 -0.889 27 2

31 5.320 -0.384 8 -1

32 2.538 - 0.087 - 19 -9

lamitniernesmerim
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Bars = Errors X 150

Part No: 2811
	

NC filename: PT281000.DNC

CAD filename MOD28S1.COL Part Name: MOD28S1
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Dimensional errors

Fig. 5. "Whiskers" plot of the reduced errors on the finish part.

dome and the wall of the short cylinder next to it.
Table 1 shows the errors at point 12 on the short
cylinder wall, and point 13, the first point on the
dome. After the semi-finish cut, the difference
between the two errors was 15 pm. After the finish
cut with error compensation, the difference was only
11 ,um. This indicates that the error compensation
algorithm reduced the discontinuity between the two
features by 27%. A potential explanation for this
result is the following. Since there was only one point
(point 12) on the short cylinder the spline did not have
a sufficient number of knots on the short cylinder to
model the discontinuity adequately. While an even
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Fig. 6. Scaled semi-finish errors in micrometers on the leading

dome profile and linear feature to the left of the dome profile. See
Points 12 through 32 in Table I.

smoother junction is preferred, the reduction in
discontinuity does show an improvement that was
consistent in other tests (:Bandy et al., 2001).

6. Discussion and future work

Compensation of process related errors based on
process-intermittent measurements and modeling
has shown in the past that the procedure can correct
errors on parts with linear features (Bandy and
Gilsinn, 1996; 1995a,b). The algorithm introduced
in the current study extends significantly this
procedure. It makes two major contributions. First,
the new algorithm corrects errors on parts with arc
features neighboring linear features and maintains
path and slope continuity between tangent features. In
order to accomplish this is necessary to use splines
with boundary constraints. These splines have been
demonstrated to adequately model machining errors
probed on semi-finished parts. They have successfully
been used to reduce the part errors on the finish part to
a small fraction of the original errors on the semi-
finished part. However, the algorithm does need future
refinements to more effectively enforce tangency.
Second, the algorithm presented in this report allows
the splines to be represented in the compact form of
Equation 29. This ensures that the resulting poly-
nomials are of low order so that they can be used in
real-time error compensation during machining pro-
cesses. That is, the error tr odel evaluation time is not
a significant factor to the error compensation process.

Future research will be directed towards extending
the spline error compensation model with feature
boundary constraints to contour milling operations.
This extension, however, introduces a number of
problems that have been topics of research in com-
puter graphics and coordinate measuring machines. In
turning operations the selection of probing points is
essentially a one-dimensional problem and there are
techniques for selecting optimum knot locations (see
De Boor, 1978). Modeling, of contour milling errors
calls for the use of multivariate splines (see Chui,
1988). Selecting optimum knot locations in order to
both model contoured features and provide tangency
continuity between features as needed is not a settled
problem. Proper knot selection provides both the
locations for on-machine intermittent probing for
semi-finish errors and also locations for coordinate
measuring machine probing for post-process evalua-
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tion. Some research has been directed along the line of
globally sampling a workpiece but without concern
for individual features. Whereas Hocken et al. (1993)
discussed uniform sampling, Woo et al. (1995)
describe an algorithm for selecting points that
increases measurement accuracy while lowering the
sample size. Neither of these groups of researchers
considered the problem of a milled surface with both
contour and fiat features. For example, spline
modeling of contours calls for more knots than flat
features. The optimum number, however, is not
known and depends on the particular shape of the
contour. There is therefore, an open problem relating
to strategies for selecting spline knots for intermittent
probing on milled surfaces and modeling of milled
contours. Inevitably, the optimum selection of points
would likely lead to a set of scattered points rather
than an even distribution. Another problem relates to
building splines that model scattered data and provide
smooth transitions between features. Fortunately,
some progress toward a solution of this problem has
been reported (see Lee et al., 1997 and Loop, 1994).
What has not been addressed is the optimum
implementation of these spline algorithms in a
machine tool error compensation system.
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